

Population Growth Forum

Region 10 Service Center

Dallas, Texas

July 14, 2016

@TexasDemography

World Population Growth, in Billions

Number of years to add each billion (year)

Sources: First and second billion: Population Reference Bureau. Third through ninth billion: United Nations, *World Population Prospects: The 2004 Revision* (medium scenario), 2005.

Growth in More, Less Developed Countries

Billions

Source: United Nations, World Population Prospects: The 2004 Revision (medium scenario), 2005.

Trends in Population Growth Worldwide

Population Increase and Growth Rate, Five-Year Periods

Source: United Nations, World Population Prospects: The 2004 Revision (medium scenario), 2005.

Thomas Malthus

Essay on the Principle of Population

- Relationship between population and resources
- Population growth threatened prosperity because it inevitably outran increases in food supplies
 - agricultural production grew arithmetically, increasing by the same amount over 25 years
 - population grew geometrically, doubling every 25 years

Population Clock

Modeling population and its consequences

Some models show population growth leading to resource depletion, which can result in declining food production, industrial output, and population.

Increasing our carrying capacity

Technology has allowed us to raise Earth's carrying capacity for our species time and again.

Tool-making, agriculture, and industrialization each enabled humans to sustain greater populations.

Arithmetic Growth

population increases by a constant number of persons for each period arithmetic growth entails constant increments

Geometric Growth

Geometric growth entails ever larger increments.

Population increments become larger because increases are self-reinforcing "compound interest"

Exponential Growth

Exponential growth refers to the situation where growth compounds continuously - at every instant of time.

Year	Type of Growth Rate			
	Arithmetic	Geometric	Exponentia	
A	В	C	D	
Population	Totals			
2000	5,000	5,000 5,00		
2001	7,500	7,500	7,500 8,244	
2002	10,000	10,000 11,250 13,59		
2003	12,500	16,875	22,408	
2004	15,000	25,313	36,945	
2005	17,500	37,969	60,912	
2006	20,000	56,953	100,428	
2007	22,500	85,430	165,577	
2008	25,000	128,145	272,991	
2009	27,500	192,217	450,086	
2010	30,000	288,325	742,066	
Population	Ratios			
$P_1: P_2$	variable	1:1.500	1:1.649	

Annual Growth Rates

Logistic growth

"universal law of population growth"

S-shaped trend is a more realistic depiction of long-run national or global population growth than straight lines or exponential curves

Extrapolation of Texas Population Using Historical Data (1850-1990) - Exponential

Extrapolation of Texas Population Using Historical Data (1850-1990) - Logistic

Extrapolation of Texas Population Using Historical Data (1850-1990) - Linear

Extrapolation of Texas Population Using Historical Data (1850-1990) -Polynomial

Extrapolation of Texas Population Using Historical Data (1850-1990) -Polynomial

Analyzing Growth

- Absolute change
- Percent change
- Average annual increase
- Arithmetic growth rate

Formulas	Examples	
Definitions	Mexico	
P_0 = population at the start, e.g. year zero	$P_0 = 98787000$ (Year 2000)	
P_n = population at the end, e.g. after n years	$P_n = 162356000$ (Year 2050) n = 50 years (mid-2000 to mid-2050)	
n = number of intervals (e.g. years) between P_0 and P_n		
1 Absolute change		
$P_n - P_0$	162356000 - 98787000 $= 63569000$	
2 Percentage change		
$\left(\frac{P_n - P_0}{P_0}\right) \times 100$	63 569 000/98 787 000 × 100 = 64.35%	
3 Average annual increase		
$\frac{P_n - P_0}{n}$	63 569 000/50 = 1 271 380	
4 Arithmetic growth rate		
$\left(\frac{P_n - P_0}{n}\right) \div P_0 \times 100$	$1271380/98787000 \times 100$ = 1.29%	

Data source: World Bank (1994: 343)

Geometric Growth

• Estimating intercensal numbers, or projecting future population, assuming that the growth rate remains constant (growth rates usually vary through time)

Geometric Growth

Formulas	Examples		
Definitions ·	United States		
P_0 = population at the start	$P_0 = 250.4$ (millions, mid-1990)		
P_n = population at the end	$P_n = 297.2$ (millions, mid 2010)		
n - number of intervals between Po and P	n = 20 years		

1 End of period population

$$P_n = P_0 (1+r)^n$$

r = annual growth rate

or

$$\log P_n = \log P_0 + \log(1+r) \times n$$

2 Initial population

$$P_0 = \frac{P_n}{\left(1+r\right)^n}$$

or

$$\log P_0 = \log P_n - \log(1+r) \times n$$

$$P_n = 250.4 \times (1.0086041)^{20}$$

= 297.2

or

$$\log P_n = 2.39863 + 0.07441$$

:.
$$P_n = 297.2$$

r = 0.86041%

$$P_0 = 297.2/(1.0086041)^{20}$$

= 250.4

or

$$\log P_0 = 2.47305 - 0.07441$$

$$\therefore P_0 = 250.4$$

3 Geometric growth rate

$$r = \sqrt[n]{\frac{P_n}{P_0}} - 1$$

or

$$\log(1+r) = \frac{\log\left(\frac{P_n}{P_0}\right)}{n}$$

4 Interval between two populations

$$n = \frac{\log\left(\frac{P_n}{P_0}\right)}{\log(1+r)}$$

5 Doubling time

$$n = \frac{\log 2}{\log(1+r)}$$

$$r = (297.2/250.4)^{(1/20)} - 1$$

= 0.008 604 1 or 0.860 41%
or

$$log(1 + r) = 0.003720724$$

 $\therefore r = 0.86041\%$

Growth and Replacement

Age structure: Age pyramids

Canada (left) has a much slower growing population than does Madagascar (right).

Age structure: "Graying populations"

Demographers project that China's population will become older over the next two decades.

Factors affecting population growth rates

Population growth depends on rates of birth, death, immigration, and emigration.

```
(birth rate + immigration rate)
```

- (death rate + emigration rate)
 - = population growth rate

Natural rate of population change

Change due to birth and death rates alone, excluding migration

Is often expressed in % per year

China's natural rate of change has fallen

Table 7.1 Recent Trends in China's Population Growth				
	1970	1993	2002	
Total fertility rate	5.8	2.0	1.8	
Rate of natural population increase (% per year)	2.6	1.2	0.7	
Doubling time (years)	26.9	58.3	100.0	

China's rate has fallen with fertility rates. It now takes the population 4 times as long to double as it did 25 years ago.

Global growth rates have fallen

The annual growth rate of the world population has declined since the 1960s.

(But the population size is still rising)

Fertility rates affect population growth rates

Total fertility rate (TFR) = average number of children born per woman during her lifetime

Replacement fertility = the TFR that keeps population size stable

For humans, replacement fertility is about 2.1.

Total fertility rates by region

Region	Total fertility rate (TFR)		
Africa	5.2		
Latin America and Caribbean	2.7		
Asia	2.6		
Oceania	2.5		
North America	2.1		
Europe	1.4		

African nations have the highest TFRs.

European nations have the lowest TFRs.

INTERPOLATION OF POINT DATA

- Interpolation inferring intermediate values in a given series of data by use of a mathematical formula or a graphic procedure.
- Extrapolation inferring values that go beyond the given series of data by use of a mathematical formula or a graphic procedure.

Summary measures

$$\frac{M}{F} \times 100$$

$$\frac{P_{0-14} + P_{65+}}{P_{15-64}} \times 100$$

• Child dependency ratio
$$\frac{P_{0-14}}{P_{15-64}} \times 100$$

$$\frac{P_{0-14}}{P_{15-64}} \times 100$$

• Aged dependency ratio
$$\frac{P_{65+}}{P_{15-64}} \times 100$$

$$\frac{3+}{-64} \times 100$$

Economic dependency ratio

$$\frac{P_{65+}}{P_{0-14}} \times 100$$

$$\frac{P_{80+}}{P_{50-64}^f} \times 100$$

Central age – single year digits

Mean - <u>sum of values</u>
 number of values

Mode - most frequently occurring value or group

 Median -middle value in a set of numbers arranged in ascending or descending order

Median age

 The median is preferred to the mean because of the marked skewness of the age distribution

• The calculation of mean is often complicated by openended age groups (e.g. 80+)

Age pyramids

- Gives a detailed picture of the age-sex structure of a population
- Consists of bars representing age groups in ascending order from lowest to highest pyramided on one another
- Bars are generally by single or 5-year age groups
- Number (or percentage) of persons in an age group is indicated by length of its bar from central axis
- Males on left side; females on right side
- Pyramids with absolute numbers show differences in overall sizes of total populations and in number at each age
- Percent pyramids show relative differences in population size at each age-sex group

Age structure of Finnish population in 1917 and 2006

Population Pyramids: Senegal, United States, and Italy

From pyramid to kite

Population Pyramid of Japan, 2006

Texas Population Pyramid by Race/Ethnicity, 2010

Texas non-Hispanic White and Hispanic Populations by Age, 2010

I-10 Population Density Profile, 2010 October 11, 2012

Contact

Lloyd Potter, Ph.D.

Office: (210) 458-6530

Email: Lloyd.Potter@utsa.edu

Internet: demographics.texas.gov

@TexasDemography